Chapter 1

CSCl-1510-003

What is a Number?

- An expression of a numerical quantity
- A mathematical quantity
- M any types:
- Natural Numbers
- Real Numbers
- Rational Numbers
- Irrational Numbers
- Complex Numbers
- Etc.

Numerical Representation

- A quantity can be expressed in several ways

$$
\begin{aligned}
& -\mathrm{XIV} \\
& -1110_{2} \\
& -\mathrm{E}_{16} \\
& -16_{8}
\end{aligned}
$$

- All of these are symbols used to represent a quantity or value.

What is the Base or Radix?

- The cardinality of the set of symbols in a number system
- Cardinality- The number of elements in a given set.
- The value of the highest symbol is always one less than the base.
- Base 10: $S=\{0,1,2,3,4,5,6,7,8,9\}$
- Denoted with a subscript
- 1110_{2}
- E_{16}
-16_{8}

Examples

- The base determines the set of symbols
- Base 10: $S=\{0,1,2,3,4,5,6,7,8,9\}$
- Base 8: $S=\{0,1,2,3,4,5,6,7\}$
- Base 5: $\quad S=\{0,1,2,3,4\}$
- Base 2: $\quad S=\{0,1\}$
- Base 16: $\mathrm{S}=$?
- Borrow the needed digits from the alphabet, so

$$
S=\{0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F\}
$$

Why do we care?

- Without knowing what base you are working in, there is no way to know what quantity is being enumerated.
- 11 could mean 11_{10},

$$
\begin{aligned}
& 11_{2}=3_{10} \\
& 11_{5}=6_{10}
\end{aligned}
$$

- 15 could mean 15_{10},

$$
\begin{aligned}
& 15_{8}=13_{10} \\
& 15_{16}=21_{10}
\end{aligned}
$$

Elementary School Flashback

- Why is the 1's column the 1's column (base 10)?
- The 10 's the 10 's?
- Etc
- Everything to do with the base raised to a power.

Positional Number Representation Base 10

Remember Expanded Notation?

$$
a_{4} \times 10^{4}+a_{3} \times 10^{3}+a_{2} \times 10^{2}+a_{1} \times 10^{1}+a_{0} \times 10^{0}
$$

Also known as positional notation.

Example

$$
\begin{aligned}
& 7,392_{10} \\
& 7 \times 1000+3 \times 100+9 \times 10+2 \times 1 \\
& 7 \times 10^{3}+3 \times 10^{2}+9 \times 10^{1}+2 \times 10^{0}
\end{aligned}
$$

$$
a_{n} r^{n}+a_{n-1} r^{n-1}+\cdot \cdot+a_{2} r^{2}+a_{1} r^{1}+a_{0} r^{0} \cdot a_{-1} r^{-1}+a_{-2} r^{-2}+\cdot \cdot+a_{-m} r^{-m}
$$

Where:
r is the radix or base.
n is the number of digits to the left of the decimal point m is the number of digits to the right of the decimal point

Why do we care?

- Nice way to convert from any base to decimal.
- Ex: 1011_{2}

$$
\begin{aligned}
& 1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0} \\
& 1 \times 8+0 \times 4+1 \times 2+1 \times \\
& 8+2+1 \\
& 11_{10}
\end{aligned}
$$

Using Positional Notation

Ex: 75_{8}
$\mathrm{Ex}: \mathrm{A} 2 \mathrm{E}_{16}$

Ex: 32.14_{8}

Some terminology

- Bits - digits in a binary number
- Byte - 8 bits
- Base 2 - Binary
- Base 8 - Octal
- Base 10 - Decimal
- Base 16 - Hexadecimal or Hex
- Base 32 - Duotrigesimal

Base conversion

- Decimal to any base.
- Use division
- Whole numbers
- Left of the decimal point
- Use multiplication
- Fractional part of a number
- Right of the decimal point
- Ex: Convert 13_{10} to base 2

$$
\begin{aligned}
& \begin{array}{l}
2 \lcm{0} r 1 \\
2 \longdiv { 1 } r \\
2 \longdiv { 3 } r \\
2 \longdiv { 6 } r \\
2 \longdiv { 1 3 }
\end{array} \\
& 13_{10}=1101_{2}
\end{aligned}
$$

- How to check your answer

Checking your work

- Scientific notation can be how

Decimal to Binary Conversion

- Convert 857_{10} to base 2 .

Check the result

- Use Positional Notation

2^{9}	2^{8}	2^{7}	$\mathbf{2}^{6}$	$\mathbf{2}^{5}$	2^{4}	2^{3}	2^{2}	2^{1}	$\mathbf{2}^{0}$
512	256	128	64	32	16	8	4	2	1
1	1	0	1	0	1	1	0	0	1

$512+256+64+16+8+1=857_{10}$

Octal

$$
\begin{aligned}
& 0 \text { r } 1 \\
& \text {) } 1 r 5 \\
& \text {) } 13 r 3 \\
& 857_{10}=1531_{8} \\
& \text {) } 107 \mathrm{r} 1 \\
& 8 \text {) } 857
\end{aligned}
$$

8^{3}	8^{2}	8^{1}	8^{0}
512	64	8	1
1	5	3	1

$1 \times 512+5 \times 64+3 \times 8+1 \times 1=857_{10}$

Hexadecimal

$$
\begin{aligned}
& 0 \text { r } 3 \\
& \text {) } 3 r 5 \\
& \text {) } 53 \mathrm{r} 9 \\
& 857_{10}=359_{16} \\
& 16 \text {) } 857
\end{aligned}
$$

Example

324_{10} to base 5

Ex 1.4

0.6875_{10} to binary
$.6875 \times 2=1.3750=1+.3750$
$.3750 \times 2=0.7500=0+.7500$
$.7500 \times 2=1.5000=1+.5000$
$.5000 \times 2=1.0000=1+.0000$
$0.6875_{10}=0.1011_{2}$

Practice

- 0.513_{10} to octal

Powers of 2

- Conversion between binary, octal, and hexadecimal made easy.
- Just regroup and convert
- How to regroup
- Consider the least number of bits it would take to encode the largest symbol of the new base.

Binary-coded Octal

- 3 bits to encode 78
-Why?
- Do the math.

Binary	Octal
$\mathbf{0 0 0}$	0
$\mathbf{0 0 1}$	1
$\mathbf{0 1 0}$	2
$\mathbf{0 1 1}$	3
$\mathbf{1 0 0}$	4
$\mathbf{1 0 1}$	5
$\mathbf{1 1 0}$	6
$\mathbf{1 1 1}$	7

Binary to Octal

110110101010_{2}
110110101 010 $6 \quad 6 \quad 5 \quad 2$
6652.

- To convert from Octal to Binary, do the same thing in reverse

Practice

- Convert 76_{10} to binary, then take the result and quickly convert to octal. Now use your octal result and convert back to decimal. You should get the original number.
- Do the same thing, with $57_{10}, 438_{10}$ and 311_{10}

Binary to Hexadecimal

Binary

Hexadecimal
How many bits are needed to represent the largest single cyphe in hexadecimal?
Hint: do the math.

$\mathbf{0 0 0 0}$	0
$\mathbf{0 0 0 1}$	1
$\mathbf{0 0 1 0}$	2
$\mathbf{0 0 1 1}$	3
$\mathbf{0 1 0 0}$	4
$\mathbf{0 1 0 1}$	5
$\mathbf{0 1 1 0}$	6
$\mathbf{0 1 1 1}$	7
$\mathbf{1 0 0 0}$	8
$\mathbf{1 0 0 1}$	9
$\mathbf{1 0 1 0}$	A
$\mathbf{1 0 1 1}$	B
$\mathbf{1 1 0 0}$	C
$\mathbf{1 1 0 1}$	D
$\mathbf{1 1 1 0}$	E
$\mathbf{1 1 1 1}$	F

Practice

- Convert 76_{10} to binary, then take the result and quickly convert to hexadecimal. Now use your hexadecimal result and convert back to decimal. You should get the original number.
- Do the same thing, with $57_{10}, 438_{10}$ and 311_{10}

Octal to Hexadecimal and vice versa

- Almost the same thing.
- Convert to Binary
- Then regroup as necessary.
- Remember you always group from the decimal point to the right or left.

Example

2378 to Hex
Convert to binary

$$
\begin{array}{ccc}
2 & 3 & 7 \\
010 & 011 & 111_{2}
\end{array}
$$

Regroup

010011111_{2}

$9 \quad \mathrm{~F}_{16}$

Does the leading zero mean anything?

Why use Hexadecimal and Octal?

- Convenience
- Ex. 1011011001010000_{2}
- Better written as: 1011011001010000_{2}
$=\mathrm{B}_{65 F_{16}}$

Unsigned vs Signed Numbers

- Unsigned
- All bits are used to show the magnitude of the number.
- All numbers are considered to be positive
- Signed
- Positive and Negative

Signed Numbers

- There are three basic ways to designate the sign of a number.
- Sign and magnitude
- Radix-1'scomplement
- Radix complement

Why using complement?

- simplifying the subtraction operation by adding a complement of that number instead of subtraction for that number
$15_{10}-4_{10}=15_{10}-\left(\right.$ complement of $\left.4_{10}\right)=11_{10}$

Sign and M agnitude

- What is taught in school.
- A value with a sign in front of it
- How does it work in Binary?
- Pretty much the same way as Decimal
- By convention a sign bit is used.
$-0 \rightarrow$ positive

$$
\begin{aligned}
& a=1111 ? \\
& \Rightarrow a=15_{10} \text { (if unsigned) } \\
& \Rightarrow a=-7 \text { (if signed). }
\end{aligned}
$$

$-1 \rightarrow$ negative

Complements of Numbers

- Two basic types
- Diminished radix complement
- Defined as: ($r^{n}-1$) - N; given a number N in base r having n digits
- Radix complement
- Defined as r^{n} - N; given a number $N \neq 0$ in base r having n digits and 0 if $N=0$.
- In base 10, we have : 9'complement and 10's complement
- In base 2, we have : 1'complement and 2's complement.

Diminished Radix Complement

- AKA R-1's complement
($r^{n}-1$) - N
In base 10: Finding 5 digits the 9's complement of 1357 .

We have $\mathrm{n}=5 ; \mathrm{r}=10, \mathrm{~N}=1357$.
Result $=\left(10^{5}-1\right)-1357=98642$

Radix Complement

- Radix complement
- Defined as r^{n} - N ;
- In base 10: Finding 5 digits the 10 's complement of 1357.
- Result =105-1357 =98643

Diminished Radix Complement

- AKA R-1's complement

$$
\left(r^{n}-1\right)-N
$$

In base 2: Finding 8 digits the 1 's complement of 01101100.
We have $\mathrm{n}=8 ; \mathrm{r}=2, \mathrm{~N}=01101100\left(108_{10}\right)$ Result $=\left(2^{8}-1\right)-108=147{ }_{10}=10010011$. (do directly in base 2): $11111111 \quad$ (8 digits 1)
-0110 1100

$=10010011$

- TRICK by "flipping the bits" : 0 ->1 ; 1->0

Radix Complement

AKA R-1's complement

$$
\left(r^{n}\right)-N
$$

In base 2: Finding 8 digits the 2's complement of 01101100.
We have $\mathrm{n}=8 ; \mathrm{r}=2, \mathrm{~N}=01101100\left(108_{10}\right)$
Result $=\left(\mathbf{2}^{8}\right)-108=148_{10}=10010100$.
(do directly in base 2):
100000000 (8 digits 1)
-0110 1100
$=010010100$

- TRICK by "flipping the bits" : 0 ->1;1->0. Then Add 1.

Practice

- Finding 8 digits the 1's complement of 0111 1000.
- Finding 8 digits the 2's complement of 0111 1000.

Practice

- Finding 8 digits the 1's complement of 0111 1000.
- Answer: 100001111
- Finding 8 digits the 2's complement of 0111 1000.
- Answer: 10001000

(R-1)'s complement

- Octal: 8's complement and 7's complement
- Hexadecimal: 16's complement and 15'complements.
R-1's complement : ($r^{n}-1$) $-N$.
Radix complement: $\mathrm{r}^{\mathrm{n}}-\mathrm{N}$;

Why is this wrong?

- Find the (R-1)'s complement of 56_{8}

$$
\begin{aligned}
& 8^{2}=64 \\
& 64-1=63 \\
& 63-56=7
\end{aligned}
$$

WRONG
 This is base 10 math not base 8 .

The Right Way

$$
\begin{gathered}
\left(8_{10}\right)^{2}=64_{10}=100_{8} \\
100_{8}-1_{8}=77_{8} \\
77_{8}-56_{8}=21_{8}
\end{gathered}
$$

21_{8} is the complement of 56_{8}

The Right Way

- TRICK: CONVERT TO BINARY. DO TRICK IN BINARY. THEN CONVERT BACK.
- $21_{8}=010001 \Rightarrow 101110=56_{8}$

Complements Summary

- The complement of the complement returns the original number
- If there is a radix point
- Calculate the complement as if the radix point was not there.
- Used in computers to perform subtraction.

Complements Summary

- 1's complement
- Is the interim step towards 2's complement
- Problem: Two values of 0.
+0: 00000000 , let's flip all bits
- 0: 11111111.
- 2's complement
- M ost CPU's today use 2's complement.
- Only one value 0 :

0000000

Rules of Addition

- Binary addition

$$
\begin{aligned}
& 0_{2}+0_{2}=0_{2} \\
& 0_{2}+1_{2}=1_{2}+0_{2}=1_{2} \\
& 1_{2}+1_{2}=10_{2}
\end{aligned}
$$

Notice the carry into the next significant bit.

Sign and M agnitude

- Example

$0100{1111_{2}}^{2}$
 $+00100011_{2}$

Sign bit

Carry								
	0	1	0	0	1	1	1	1
	0	0	1	0	0	0	1	1
Result								

Sign and M agnitude

- Example

$01001111_{2}$$+\underline{0010 ~ 0011 ~}$									$\begin{array}{r} 79 \\ +\quad 35 \\ \hline \end{array}$
Carry	0	0	0	1	1	1	1		
	0	1	0	0	1	1	1	1	
	0	0	1	0	0	0	1	1	
Result	0	1	1	1	0	0	1	0	
$=01110010_{2}$									114

Sign and M agnitude

- Another example

Sign and M agnitude

- Another example

Sign and M agnitude

- And another example
01001111_{2}
$+\underline{01100011_{2}}$

Carry								
	0	1	0	0	1	1	1	1
	0	1	1	0	0	0	1	1
Result								

$=$?

Sign and M agnitude

- Another example ...

$01001111_{2}$$+\underline{0110 ~ 0011 ~}$									$\begin{array}{r} 79 \\ +99 \\ \hline-50 \end{array}$
Carry	1	0	0	1	1	1	1		
	0	1	0	0	1	1	1	1	
	0	1	1	0	0	0	1	1	
Result	1	0	1	1	0	0	1	0	

$=10110010_{2} \quad$ What Happened ???
Should be 178

Sign and M agnitude

- The error is due to overflow
- Caused by a carry out of the MSB of the number to the sign bit.
- Signed magnitude works but....
- Suffers from limitations
- Adding positive and negative numbers doesn't always work. (overflow)

Keep in mind

- If you add 2 number of the same sign AND the result is a different sign, you have

OVERFLOW

Rules of Subraction

- Use the fact you can add a negative number to get the same result.

$$
\text { Ex. } 15_{10}-4_{10}=15_{10}+\left(-4_{10}\right)=11_{10}
$$

Unsigned math

- Procedure for subtraction of 2 unsigined numbers.
- Ex: $\mathrm{M}-\mathrm{N}=\mathrm{x}$

1. Add M to the r 's complement of N
2. If $M \geq N$, an end carry is produced which can be discarded.

- Then x is positive as indicated by the carry-out

3. If $M \leq N$

- Then x is negative and in r 's complement form

Complement Arithmetic

- What is a complement?
- Webster's
a : something that fills up, completes, or makes perfect.
b : the quantity, number, or assortment required to make a thing complete
- A way to represent negative numbers.
- Two types
- R-1's Complement (diminished radix complement)
- R's Complement (radix complement)

R-1's Complement

- Areminder:
$-\bar{N}=\left(r^{n}-1\right)-N$
- \bar{N} is - N in 1's complement notation
- where n is the number of bits per word
- N is a positive integer
- r is the base

R-1's Complement

- Word Range:
- The range of numbers that can be represented in a given number of bits.

$$
-\left(r^{n-1}-1\right) \text { to } r^{n-1}-1
$$

- Ex: What is the range of signed binary numbers that can be represented in 3 bits?
- -3_{10} to 3_{10}

Some Terminology

- Augend, addend, sum

15 Augend (AKA top number)
+7 Addend (AKA bottom number)
22 Sum

- M inuend, subtrahend, difference

15 Minuend (AKA top number)
$\frac{-7 \text { Subtrahend }}{8 \text { Difference }}$ (AKA bottom number)

1's Complement (Subtraction)

- Never complement the top number in a problem.
- Add the 1's complement of the bottom number to the top number.
- This will have the same effect as subtracting the original number.
- If there is a carry-out, end around carry and add back in.

How to Subtract Numbers

- Step 1: 1's complement the bottom number.
- Step 2: Do the math.
- Step 3: If there is a carry out, end around carry and add it back in.
- Note: If there is no carry the answer is in 1's complement form.
- What does this mean?

Examples

$X=0111 \quad Y=0101$

$$
X-Y
$$

$$
Y-X
$$

$$
\begin{array}{r}
0111 \\
-0101
\end{array} \begin{array}{r}
0111 \\
+1010 \\
\hline 10001 \\
+\quad+1
\end{array}
$$

$$
\begin{array}{r}
0101 \\
-\quad 0111
\end{array} \longrightarrow \begin{array}{r}
0101 \\
+1000 \\
\hline 1101
\end{array}
$$

Things to notice about 1's complement

- Any negative number will have a leading 1.
- There are 2 representations for 0,00000 and 11111.
- Not really a problem, but still have to check for it.
- There is a solution.

R's Complement Word Range

- Areminder
- $\bar{N}=\left(r^{n}\right)-N$
$-\bar{N}$ is -N in 2 's complement notation
- where n is the number of bits per word
-N is a positive integer
$-r$ is the base

R's Complement

- Word Range is:

$$
-\left(r^{n-1}\right) \text { to } r^{n-1}-1
$$

Ex: What is the range of signed binary numbers that can be represented in 3 bits?

$$
\left(-4_{10} \text { to } 3_{10}\right)
$$

2's Complement Subtraction

- Step 1: 2's complement the bottom number. - Never the top number
- Step 2: Perform the addition
- Step 3: if there is a carry out, ignore it.
- If a number leads with a 1 , it is negative and in 2 's complement form.

Examples

$X=0110 Y=0101$

$X-Y$
0110
$-\quad 0101$ $\begin{array}{r}0110 \\ +1011 \\ \hline 70001\end{array}$

Intro to Binary Logic

Overview

- Two discrete values
- True or false
- Yes or no
- High or low
- 1 or 0

Overview

- Consists of binary variables and a set of logical operations
- 3 basic logical operations
-AND
- OR Each of which produces a result
-NOT

AND

- Denoted by a dot (•) or the absence of a symbol.

$$
x \cdot y=z=x y
$$

- Interpreted to mean that
- $z=1$ if and only if (iff) $x=1$ and $y=1$
- otherwise the result is $z=0$.

AND

- The results of the operation can be shown by a truth table.

OR

- Denoted by a plus (+)

$$
x+y=z
$$

- Interpreted to mean that
- $z=1$ if $x=1$ or $y=1$
- otherwise the result is $z=0$.

OR

- The truth table

- At least 1 input must be true for the result to be true.

NOT

- This operation is represented by a prime (') X^{\prime}
- Referred to as the complement operation.

x	x^{\prime}
0	
1	

Pitfall

- Binary logic should not be confused with binary arithmetic.
+implies OR
NOT addition
- implies AND

NOT multiplication

- Ex: $a(b+c d)=a$ and (b or (c and d))

Another way to describe logic operations

Logic Gates

- Electronic circuits that operate on one or more input signals to produce an output.

Timing Diagram

$x \quad 0 \quad 1 \quad 1 \quad 0 \quad 0$

AND: $x \cdot y$
$0 \quad 0 \quad 1 \quad 0$
0

Timing Diagram

Copyright 02013 Pearson Education, publishing as Prentice Hall

Timing Diagram

Summary

- Binary logic is comprised of 3 basic operations. - AND, NOT, OR
- Be wary of the pitfall
- Binary logic is not binary arithmetic
- Each operation has a matching logic gate

