Chapter 1

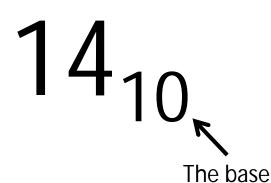
CSCI-1510-003

What is a Number?

- An expression of a numerical quantity
- A mathematical quantity
- Many types:
 - Natural Numbers
 - Real Numbers
 - Rational Numbers
 - Irrational Numbers
 - Complex Numbers
 - Etc.

Numerical Representation

- A quantity can be expressed in several ways
 - -XIV
 - 1110₂
 - Е₁₆
 - 16₈



• All of these are symbols used to represent a quantity or value.

What is the Base or Radix?

- The <u>cardinality</u> of the set of symbols in a number system
 - <u>Cardinality</u> The number of elements in a given set.
- The value of the highest symbol is always **one less** than the base.

- Base 10: $S = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

- Denoted with a subscript
 - 1110₂
 - Е₁₆
 - 16₈

Examples

- The base determines the set of symbols
 - Base 10: $S = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - Base 8: $S = \{0, 1, 2, 3, 4, 5, 6, 7\}$
 - Base 5: $S = \{0, 1, 2, 3, 4\}$
 - Base 2: S = {0, 1}
 - Base 16: S = ?
 - Borrow the needed digits from the alphabet, so

S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}

Why do we care?

• Without knowing what base you are working in, there is no way to know what quantity is being enumerated.

- 11 could mean 11_{10} ,

 $11_2 = 3_{10},$ $11_5 = 6_{10}$

- 15 could mean 15_{10} ,

$$15_8 = 13_{10},$$

 $15_{16} = 21_{10}$

Elementary School Flashback

- Why is the 1's column the 1's column (base 10)?
- The 10's the 10's?
- Etc
- Everything to do with the base raised to a power.

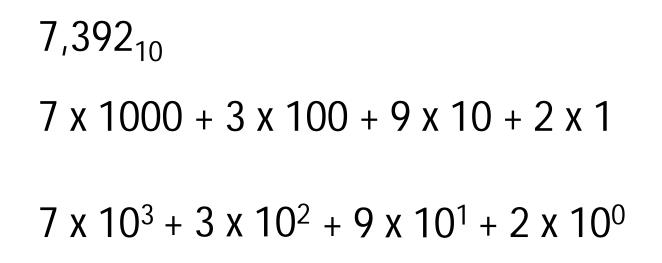
Positional Number Representation Base 10

Remember Expanded Notation?

 $a_4 \times 10^4 + a_3 \times 10^3 + a_2 \times 10^2 + a_1 \times 10^1 + a_0 \times 10^0$

Also known as positional notation.

Example



$a_n r^n + a_{n-1} r^{n-1} + \dots + a_2 r^2 + a_1 r^1 + a_0 r^0$. $a_{-1} r^{-1} + a_{-2} r^{-2} + \dots + a_{-m} r^{-m}$

Where:

r is the radix or base.

n is the number of digits to the left of the decimal point

m is the number of digits to the right of the decimal point

Why do we care?

• Nice way to convert from any base to decimal.

• Ex:
$$1011_2$$

1 x 2³ + 0 x 2² + 1 x 2¹ + 1 x 2⁰
1 x 8 + 0 X 4 + 1 x 2 + 1 x
8 + 2 + 1 1
 11_{10}

Using Positional Notation

Ex : 75₈

Ex: A2E₁₆

Ex : 32.14₈

Some terminology

- Bits digits in a binary number
- Byte 8 bits
- Base 2 Binary
- Base 8 Octal
- Base 10 Decimal
- Base 16 Hexadecimal or Hex
- Base 32 Duotrigesimal

Base conversion

- Decimal to any base.
- Use division
 - Whole numbers
 - Left of the decimal point
- Use multiplication
 - Fractional part of a number
 - Right of the decimal point

• Ex: Convert 13₁₀ to base 2

$$\begin{array}{c}
0 \\ r \\ 2 \\ 1 \\ r \\ 2 \\ 3 \\ r \\ 2 \\ 6 \\ r \\ 1 \\ 4 \\ 2 \\ 13 \\ \end{array}$$

$$\begin{array}{c}
13_{10} = 1101_{2} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{10} \\
13_{1$$

• How to check your answer

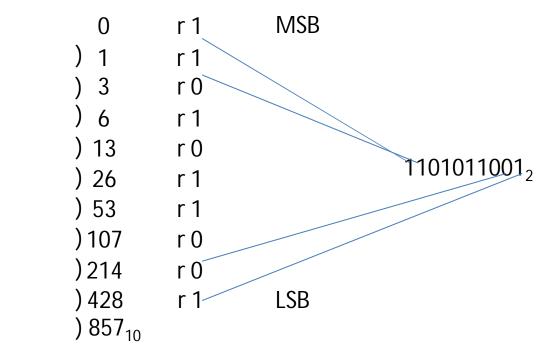
Checking your work

• Scientific notation can be how

Decimal to Binary Conversion

• Convert 857_{10} to base 2.

2

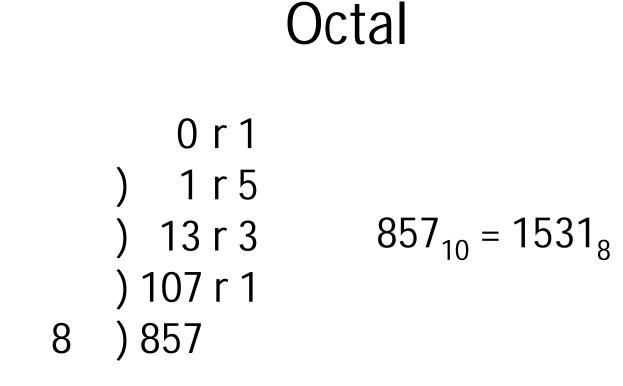


Check the result

Use Positional Notation

2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
512	256	128	64	32	16	8	4	2	1
1	1	0	1	0	1	1	0	0	1

 $512 + 256 + 64 + 16 + 8 + 1 = 857_{10}$



8 ³	<mark>8</mark> 2	8 ¹	80
512	64	8	1
1	5	3	1

 $1 \times 512 + 5 \times 64 + 3 \times 8 + 1 \times 1 = 857_{10}$

Hexadecimal

0r3) 3r5) 53r9 16)857

$$857_{10} = 359_{16}$$

16 ²	16 ¹	16 ⁰
256	16	1
3	5	9

 $3 \times 256 + 5 \times 16 + 1 \times 9 = 857_{10}$

Example

 324_{10} to base 5

Ex 1.4

 0.6875_{10} to binary

$$.6875 \times 2 = 1.3750 = 1 + .3750$$
$$.3750 \times 2 = 0.7500 = 0 + .7500$$
$$.7500 \times 2 = 1.5000 = 1 + .5000$$
$$.5000 \times 2 = 1.0000 = 1 + .0000$$

$$0.6875_{10} = 0.1011_2$$

Practice

• 0.513₁₀ to octal

Powers of 2

- Conversion between binary, octal, and hexadecimal made easy.
- Just regroup and convert
- How to regroup
 - Consider the least number of bits it would take to encode the largest symbol of the new base.

Binary-coded Octal

- 3 bits to encode 7₈
- Why?
- Do the math.

Binary	Octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Binary to Octal

1101 1010 1010₂ 110 110 101 010 $\frac{2}{5}$ → Binary Coded Octal 6 6 5 2 6652₈

• To convert from Octal to Binary, do the same thing in reverse

Practice

- Convert 76₁₀ to binary, then take the result and quickly convert to octal. Now use your octal result and convert back to decimal. You should get the original number.
- Do the same thing, with 57_{10} , 438_{10} and 311_{10}

Binary to Hexadecimal

Hovedooimal

	Binary	Hexadecimal
How many hits are needed to	0000	0
How many bits are needed to represent the largest single cyphe	0001	1
in hexadecimal?	0010	2
	0011	3
Hint: do the math.	0100	4
	0101	5
110110101010	0110	6
110110101010 ₂	0111	7
1101 1010 1010 ₂	1000	8
	1001	9
D A A	1010	А
	1011	В
DAA ₁₆	1100	С
	1101	D
	1110	E
	1111	F ²⁹

Practice

- Convert 76₁₀ to binary, then take the result and quickly convert to hexadecimal. Now use your hexadecimal result and convert back to decimal. You should get the original number.
- Do the same thing, with 57_{10} , 438_{10} and 311_{10}

Octal to Hexadecimal and vice versa

- Almost the same thing.
- Convert to Binary
- Then regroup as necessary.
- Remember you always group from the decimal point to the right or left.

Example

 237_8 to Hex Convert to binary 2 3 7 010 011 1112 Regroup 0 1001 1111₂ F_{16} 9

Does the leading zero mean anything?

Why use Hexadecimal and Octal?

- Convenience
 - Ex. 1011011001010000₂
 - Better written as: 1011 0110 0101 0000₂

= B65F₁₆

Unsigned vs Signed Numbers

- Unsigned
 - All bits are used to show the magnitude of the number.
 - All numbers are considered to be positive
- Signed
 - Positive and Negative

Signed Numbers

- There are three basic ways to designate the sign of a number.
 - Sign and magnitude
 - Radix-1'scomplement
 - Radix complement

Why using complement?

- simplifying the subtraction operation by adding a complement of that number instead of subtraction for that number

 $15_{10} - 4_{10} = 15_{10}$ - (complement of 4_{10}) = 11_{10}

Sign and Magnitude

- What is taught in school.
- A value with a sign in front of it
- How does it work in Binary?
- Pretty much the same way as Decimal
- By convention a sign bit is used.
 - $-0 \rightarrow \text{positive}$

```
a = 1 111 ?
```

- $-1 \rightarrow$ negative
- \Rightarrow a = 15₁₀ (if unsigned) \Rightarrow a = -7 (if signed).

Complements of Numbers

- Two basic types
 - Diminished radix complement
 - Defined as: (rⁿ -1) N; given a number N in base r having n digits
 - Radix complement
 - Defined as rⁿ N; given a number N ≠ 0 in base r having n digits and 0 if N = 0.
- In base 10, we have : 9'complement and 10's complement
- In base 2, we have : 1'complement and 2's complement.

Diminished Radix Complement

• AKA R-1's complement

 $(r^{n} - 1) - N$

In base 10: Finding 5 digits the 9's complement of 1357.

We have n = 5; r = 10, N = 1357. Result = (10⁵ - 1) - 1357 = 98642

Radix Complement

- Radix complement
 Defined as rⁿ N;
- In base 10: Finding 5 digits the 10's complement of 1357.
- Result = $10^5 1357 = 98643$

Diminished Radix Complement

• AKA R-1's complement

```
(r^{n} - 1) - N
```

In base 2: Finding 8 digits the 1's complement of 0110 1100.

```
We have n = 8; r = 2, N = 0110\ 1100\ (108_{10})
Result = (2^8 - 1) - 108 = 147_{10} = 1001\ 0011.
```

(do directly in base 2):

```
1111 1111 (8 digits 1)
```

-0110 1100

=1001 0011

• TRICK by "flipping the bits" : 0 -> 1 ; 1->0

Radix Complement

```
AKA R-1's complement

(r^n) - N

In base 2: Finding 8 digits the 2's complement of 0110 1100.

We have n = 8; r = 2, N = 0110 1100 (108<sub>10</sub>)

Result = (2<sup>8</sup>) - 108 = 148<sub>10</sub> = 1001 0100.

(do directly in base 2):

1 0000 0000 (8 digits 1)

-0110 1100
```

= 0 1001 0100

• TRICK by "flipping the bits" : 0 -> 1 ; 1->0. Then Add 1.

Practice

- Finding 8 digits the 1's complement of 0111 1000.
- Finding 8 digits the 2's complement of 0111 1000.

Practice

- Finding 8 digits the 1's complement of 0111 1000.
 - Answer: 1000 01111
- Finding 8 digits the 2's complement of 0111 1000.
 - Answer: 1000 1000

(R-1)'s complement

- Octal: 8's complement and 7's complement
- Hexadecimal: 16's complement and 15'complements.
- R-1's complement : $(r^n 1) N$.

Radix complement: $r^n - N$;

Why is this wrong?

• Find the (R-1)'s complement of 56₈

WRONG This is base 10 math not base 8.

The Right Way

$$(8_{10})^2 = 64_{10} = 100_8$$

 $100_8 - 1_8 = 77_8$
 $77_8 - 56_8 = 21_8$

 21_8 is the complement of 56_8

The Right Way

- TRICK: CONVERT TO BINARY. DO TRICK IN BINARY. THEN CONVERT BACK.
- 21₈ = 010 001 => 101 110 = 56₈

Complements Summary

- The complement of the complement returns the original number
- If there is a radix point
 - Calculate the complement as if the radix point was not there.
- Used in computers to perform subtraction.

Complements Summary

- 1's complement
 - Is the interim step towards 2's complement
 - Problem: Two values of 0.
- + 0: 0000 0000, let's flip all bits - 0: 1111 1111.

- 2's complement
 - Most CPU's today use 2's complement.

Only one value 0:0000 000

Rules of Addition

• Binary addition

 $0_{2} + 0_{2} = 0_{2}$ $0_{2} + 1_{2} = 1_{2} + 0_{2} = 1_{2}$ $1_{2} + 1_{2} = 10_{2}$ Notice the carry into the next significant bit.

• Example

0100 1111₂

<u>+ 0010 0011</u>₂

Sign bit

Carry								
	0	1	0	0	1	1	1	1
	04	0	1	0	0	0	1	1
Result								

- Example
 - 0100 1111₂
 - + <u>0010 0011</u>₂

Carry	0	0	0	1	1	1	1	
	0	1	0	0	1	1	1	1
	0	0	1	0	0	0	1	1
Result	0	1	1	1	0	0	1	0

79 + 35

= 0111 0010₂

114

• Another example

1 1111₂

+ <u>1 1011</u>₂

Carry					
	1	1	1	1	1
	1	1	0	1	1
Result					

= ?

• Another example

1 1111₂

+ <u>1 1011</u>₂

Carry	1	1	1	1	
	1	1	1	1	1
	1	1	0	1	1
Result	1	1	0	1	0

-15 <u>+ (-11)</u>

= 1 1010₂

- 26

• And another example

0100 1111₂

+ <u>0110 0011</u>₂

Carry								
	0	1	0	0	1	1	1	1
	0	1	1	0	0	0	1	1
Result								

= ?

- Another example
 - 0100 1111₂
 - + <u>0110 0011</u>₂

Carry	1	0	0	1	1	1	1	
	0	1	0	0	1	1	1	1
	0	1	1	0	0	0	1	1
Result	1	0	1	1	0	0	1	0

79 <u>+ 99</u> -50

 $= 1011\ 0010_2$

What Happened ??? Should be 178

- The error is due to overflow
- Caused by a carry out of the MSB of the number to the sign bit.
- Signed magnitude works but....
 - Suffers from limitations
 - Adding positive and negative numbers doesn't always work. (overflow)

Keep in mind

• If you add 2 number of the same sign AND the result is a different sign, you have

OVERFLOW

Rules of Subraction

• Use the fact you can add a negative number to get the same result.

Ex.
$$15_{10} - 4_{10} = 15_{10} + (-4_{10}) = 11_{10}$$

Unsigned math

- Procedure for subtraction of 2 *unsigned* numbers.
- Ex: M N = x
 - 1. Add M to the r's complement of N
 - 2. If $M \ge N$, an end carry is produced which can be discarded.
 - Then x is positive as indicated by the carry-out
 - 3. If M≤N
 - Then x is negative and in r's complement form

Complement Arithmetic

- What is a complement?
 - Webster's
 - a : something that fills up, completes, or makes perfect.
 - b : the quantity, number, or assortment required to make a thing complete
- A way to represent negative numbers.
- Two types
 - R-1's Complement (diminished radix complement)
 - R's Complement (radix complement)

R-1's Complement

• A reminder:

$$-\overline{N} = (r^n - 1) - N$$

- \overline{N} is –N in 1's complement notation
- where n is the number of bits per word
- N is a positive integer
- r is the base

R-1's Complement

- Word Range:
 - The range of numbers that can be represented in a given number of bits.

-(rⁿ⁻¹-1) to rⁿ⁻¹-1

- Ex: What is the range of signed binary numbers that can be represented in 3 bits?
- - 3₁₀ to 3₁₀

Some Terminology

• Augend, addend, sum

15 Augend (AKA top number)
<u>+7 Addend</u> (AKA bottom number)
22 Sum

- Minuend, subtrahend, difference
 - 15 Minuend (AKA top number)
 - 7 Subtrahend (AKA bottom number)
 - 8 Difference

1's Complement (Subtraction)

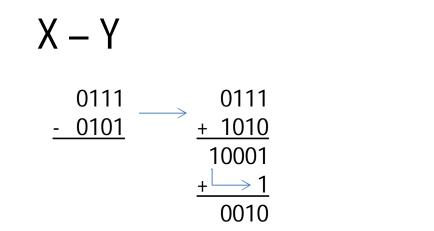
- Never complement the top number in a problem.
- Add the 1's complement of the bottom number to the top number.
 - This will have the same effect as subtracting the original number.
- If there is a carry-out, <u>end around carry</u> and add back in.

How to Subtract Numbers

- Step 1: 1's complement the bottom number.
- Step 2: Do the math.
- Step 3: If there is a carry out, end around carry and add it back in.
- Note: If there is no carry the answer is in 1's complement form.
 - What does this mean?

Examples

X = 0111 Y = 0101



 $\begin{array}{c} Y - X \\ \begin{array}{c} 0101 \\ - 0111 \end{array} \xrightarrow{} \begin{array}{c} 0101 \\ + 1000 \\ 1101 \end{array} \end{array}$

Things to notice about 1's complement

- Any negative number will have a leading 1.
- There are 2 representations for 0, 00000 and 11111.
 - Not really a problem, but still have to check for it.
- There is a solution.

R's Complement Word Range

- A reminder
- $\overline{N} = (r^n) N$
 - $-\overline{N}$ is -N in 2's complement notation
 - where n is the number of bits per word
 - N is a positive integer
 - r is the base

R's Complement

Word Range is:
 -(rⁿ⁻¹) to rⁿ⁻¹-1

Ex: What is the range of signed binary numbers that can be represented in 3 bits?

(-4₁₀ to 3₁₀)

2's Complement Subtraction

- Step 1: 2's complement the bottom number.
 Never the top number
- Step 2: Perform the addition
- Step 3: if there is a carry out, ignore it.
 - If a number leads with a 1, it is negative and in 2's complement form.

Examples

$\begin{array}{ll} X = 0110 \ Y = 0101 \\ X - Y \\ & \begin{array}{c} 0110 \\ - \ 0101 \end{array} & \begin{array}{c} 0110 \\ + \ 1011 \\ \hline 10001 \end{array} & \begin{array}{c} 0101 \\ - \ 0110 \end{array} & \begin{array}{c} 0101 \\ - \ 0110 \end{array} & \begin{array}{c} 0101 \\ + \ 1010 \\ 1111 \end{array} \end{array}$

Intro to Binary Logic

Overview

- Two discrete values
 - True or false
 - Yes or no
 - High or low
 - 1 or 0

Overview

- Consists of binary variables and a set of logical operations
- 3 basic logical operations
 - -AND
 - OR Each of which produces a result
 - -NOT

AND

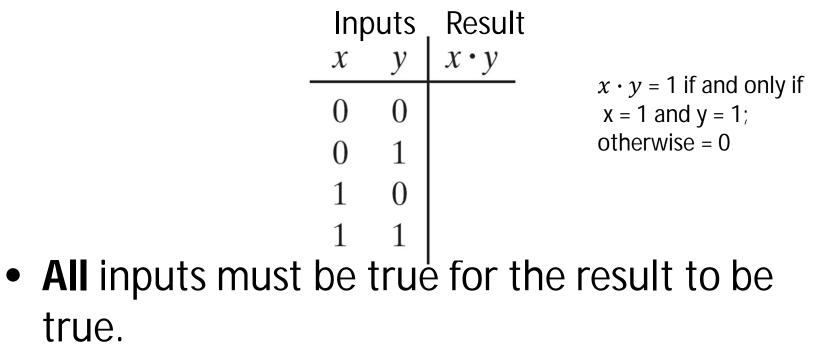
Denoted by a dot (·) or the absence of a symbol.

$$\mathbf{x} \cdot \mathbf{y} = \mathbf{z} = \mathbf{x}\mathbf{y}$$

- Interpreted to mean that
 - z = 1 if and only if (iff) x = 1 and y = 1
 - otherwise the result is z = 0.

AND

• The results of the operation can be shown by a truth table.



OR

• Denoted by a plus (+)

x + y = z

Interpreted to mean that

• otherwise the result is z = 0.

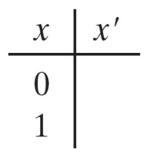
OR

• The truth table

• At least 1 input must be true for the result to be true.

NOT

- This operation is represented by a prime (')
 x'
- Referred to as the complement operation.



Pitfall

- Binary logic should not be confused with binary arithmetic.
 - + implies OR

NOT addition

 \cdot implies AND

NOT multiplication

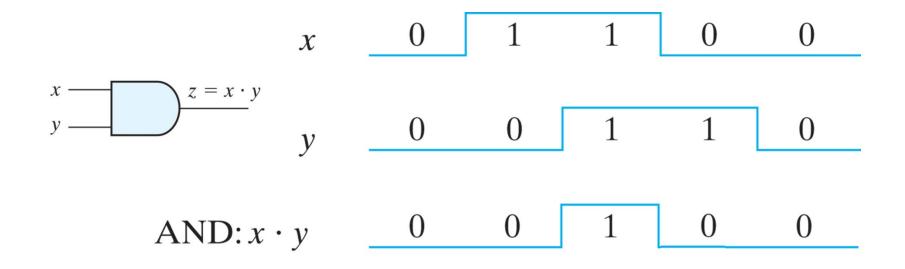
• Ex: a(b + cd) = a and (b or (c and d))

Another way to describe logic operations

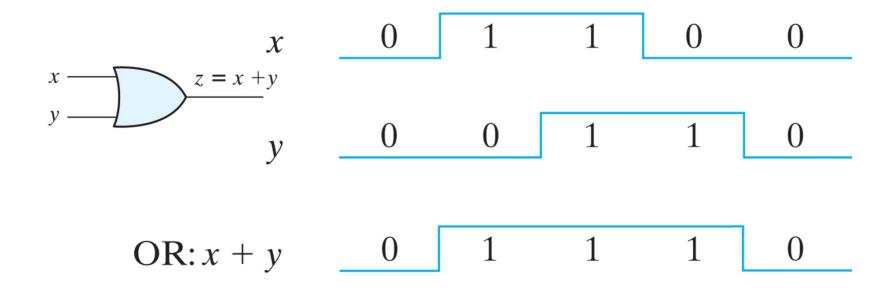
Logic Gates

• Electronic circuits that operate on one or more input signals to produce an output.

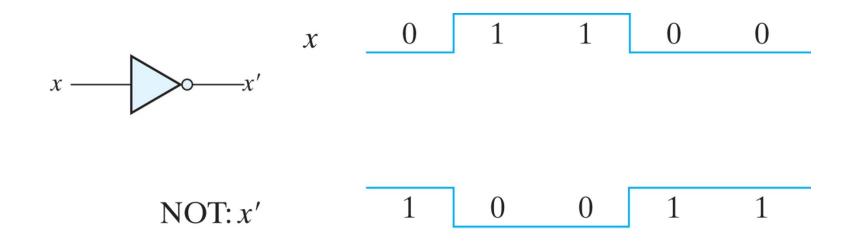
Timing Diagram



Timing Diagram



Timing Diagram



Summary

- Binary logic is comprised of 3 basic operations.
 AND, NOT, OR
- Be wary of the pitfall
 - Binary logic is not binary arithmetic
- Each operation has a matching logic gate